Bionty#
Biological ontologies for data scientists: look up, search, inspect, and map terms.
To manage custom bio-registries along with public ontologies, see this LaminDB guide.
Entities#
Protein
- UniprotSpecies
- NCBI Taxonomy, Ensembl SpeciesCellLine
- Cell Line OntologyCellType
- Cell OntologyCellMarker
- CellMarkerTissue
- UberonDisease
- Mondo, Human DiseasePhenotype
- Human Phenotype, Phecodes, Mammalian Phenotype, Zebrafish PhenotypePathway
- Gene Ontology, Pathway OntologyExperimentalFactor
- Experimental Factor OntologyDrug
- Drug OntologyBFXPipeline
- largely based on nf-core
Check out sources.yaml for details.
Didn’t see your favorite source or version? Bionty is extendable!
Installation#
Bionty is a Python package available for
pip install bionty
Usage overview & quickstart#
import bionty as bt
Look up terms with auto-complete#
lookup = bt.ExperimentalFactor().lookup()
# access via Python-friendly keys
lookup.single_cell_rna_sequencing
# access via dictionary
lookup_dict = lookup.dict()
lookup_dict["single-cell RNA sequencing"]
Search ontology terms#
celltype_bionty = bt.CellType()
# Free text search against a field
celltype_bionty.search("gamma delta T cell")
Validate, inspect & standardize terms#
gene_bionty = bt.Gene()
# Validate against a field of reference
gene_bionty.validate(["A1BG", "FANCD1"], gene_bionty.symbol)
# Run full inspection on the gene symbols
gene_bionty.inspect(["A1BG", "FANCD1"], gene_bionty.symbol)
# Convert synonyms to standardized gene symbols
gene_bionty.standardize(["A1BG", "FANCD1"])
Access a reference DataFrame#
# Reference table of the human genes
df = bt.Gene(species="human").df()
Track ontology sources#
# Display currently used sources
bt.display_currently_used_sources()
# Display all managed sources
bt.display_available_sources()
# Local yaml file specifying all managed sources
bt.LOCAL_SOURCES
# Access to the Mondo ontology
disease = bt.Disease(source="mondo")
# Access to the Human Disease ontology
disease = bt.Disease(source="doid", version="2023-01-30")